Complexity of cover-preserving embeddings of bipartite orders into Boolean lattices
نویسنده
چکیده
A b s t r a c t. We study the problem of deciding, whether a given partial order is embeddable into two consecutive layers of a Boolean lattice. Employing an equivalent condition for such embeddability similar to the one given by J. Mittas and K. Reuter [5], we prove that the decision problem is NP-complete by showing a polynomial-time reduction from the not-all-equal variant of the Satisfiability problem.
منابع مشابه
Cover–Preserving Embeddings of Bipartite Orders into Boolean Lattices
We study the question which bipartite ordered sets are order preserving embeddable into two consecutive levels of a Boolean lattice. This is related to investigations on parallel computer architectures, where bipartite networks are embedded into hypercube networks. In our main Theorem we characterize these orders by the existence of a suited edge-coloring of the covering graph. We analyze the r...
متن کاملUnmixed Bipartite Graphs and Sublattices of the Boolean Lattices
The correspondence between unmixed bipartite graphs and sublattices of the Boolean lattice is discussed. By using this correspondence, we show the existence of squarefree quadratic initial ideals of toric ideals arising from minimal vertex covers of unmixed bipartite graphs.
متن کاملCover preserving embedding of modular lattices into partition lattices
Wild, M., Cover preserving embedding of modular lattices into partition lattices, Discrete Mathematics 112 (1993) 207-244. When is a finite modular lattice couer preserving embeddable into a partition lattice? We give some necessary, and slightly sharper sufficient conditions. For example, the class of cover preserving embeddable modular lattices strictly contains the class of acyclic modular l...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملDIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reports on Mathematical Logic
دوره 49 شماره
صفحات -
تاریخ انتشار 1997